INTRODUCTION TO BIOLOGICAL ASSESSMENTS & CRITERIA

Course Presenters
William Swietlik, Michael Barbour, Chris Yoder

Introduction

Presented by
William Swietlik, USEPA
Office of Science & Technology
Take Home Concepts

The Basics:
- What are biological assessments and criteria.
- How they are derived.
- How they fit into water quality standards.
- How they can be used in water quality management.

THEME

“The true health of our aquatic environments is reflected by the biological communities that reside within them”

Prof. J. Karr
University of Washington
CWA SECTION 101

Objective

To Restore & Maintain the Chemical, Physical, & Biological Integrity of the Nation's Waters

Elements of Ecological Integrity

ECOLOGICAL INTEGRITY
BIOLOGICAL INTEGRITY

Definition:
The ability of an aquatic ecosystem to support and maintain a balanced adaptive community of organisms having a species composition, diversity, and functional organization comparable to that of natural habitats within a region.

STATUTORY AUTHORITY

Section 303(c)2(B):
“...where numeric criteria are not available, States shall adopt criteria based on biological.. assessment methods...”
STATUTORY AUTHORITY

Section 303(c)(2)(A):

...State water quality standards shall consist of designated uses of navigable waters and the criteria for protecting such uses.

...State water quality standards shall protect and enhance the quality of water and serve the purposes of the Act, including propagation of fish and wildlife.

THE LINKAGE FROM STRESSOR EFFECTS TO ECOSYSTEM RESPONSE

Figure 1. Five classes of environmental variables that affect water resource integrity and overall biological condition (modified from Karr et al. 1986).
VALUE OF BIOLOGICAL CRITERIA:
Ohio Comparison of Biosurvey with Chemical Evaluation

- Chemical Evaluation Indicates No Impairment
- Biosurvey Shows Impairment
- Biosurvey Shows No Impairment
- Chemical Evaluation Indicates Impairment

WHY?

BIOASSESSMENT

Definition:

An evaluation of the biological condition of a water body using biological surveys of the structure and function of the community of resident biota.
BIOLOGICAL CRITERIA
(Biocriteria- in Standards Sense)

Definition: *narrative*
descriptions or *numerical*
values of the structure and
function of aquatic communities
in a water body necessary
to protect the designated
aquatic life use, *implemented in,*
or through water quality
standards.

NARRATIVE AND NUMERIC BIOCRITERIA

✓ *Narrative Biocriteria* - General Statements of the Structure and Function of Aquatic Communities in a Water Body Necessary to Protect the Designated Aquatic Life Use.

✓ *Numeric Biocriteria* - Specific Quantitative Measures of the Structure and Function of Aquatic Communities in a Water Body Necessary to Protect the Designated Aquatic Life Use.
Other Meaning

- **Biocriteria**— (scientific) *quantified values representing the biological condition of a water body as measured by structure and function of the aquatic communities typically at reference condition.*
TYPICAL APPROACHES TO BIOCRITERIA DEVELOPMENT

- **Multimetric Index:** a number that integrates one or more biological metrics to express a site’s condition or health. (IBI).

- **Multivariate Predictive Model:** a predicted value of the biological condition based on what is observed at a site versus what is expected. (RIVPACS)

- **Discriminant Models:** based on aquatic life use classes

MULTIMETRIC APPROACH

Attribute: any measurable component of a biological system.

Metric: attribute that shows a quantitative change in value along a gradient of human influence.

Multimetric Index: a number that integrates several biological metrics to express a site’s condition or health. **Index of Biotic Integrity (IBI).**
MEASURES OF COMMUNITY STRUCTURE AND FUNCTION (Metrics)

✓ Species Richness
✓ Tolerant/Intolerant Species
✓ Distribution of Trophic Feeding Groups
✓ Diseases and Anomalies
✓ Number of Individuals
✓ Non-native Species
✓ Reproductive Preferences
✓ Total Number of Species
✓ Mean Individual Size Measurement
✓ Biomass

PROCESS FOR DEVELOPING & IMPLEMENTING BIOLOGICAL CRITERIA

ICI = 30
WIBI = 35
IBI = 50
HBI = 4.5
DEVELOPING BIOCRITERIA
(Multimetric approach)

1. Select Standardized, Consistent Biosurvey Protocols
2. Classify Water Bodies into Similar Groups or Classes
3. Identify Reference Sites in Each Class
4. Conduct Bioassessments at Unimpaired Reference Sites in Each Class
5. Derive Reference Conditions for Each Class
6. Conduct Bioassessments at Impacted Sites
7. Test Attributes for Response to Gradient of Conditions
8. Select Responsive Metrics
9. Develop Scoring Criteria for Each Metric
10. Aggregate Metrics With Scoring Criteria to Derive Biocriteria Index
11. Develop Biocriteria for each Aquatic Life Use
12. Apply Biocriteria to Water Bodies to Protect Those Uses
Review Fish IBI Metrics for North America and Karr IBI

Multivariate Approach – (RIVPACs)

Figure out which taxa you should probably capture

\[E \]

Compare to what you actually observe

\[O \]

The final measure = percent of expected taxa present

\[\frac{O}{E} \]
Steps in the Multivariate Process

1. Describe the continuum of assemblage types using ‘reference’ streams
2. Link assemblage types to physical-chemical features
3. Predict expected (E) assemblage of a test stream based on physical appearance
4. Compare to the observed (O) assemblage
5. O/E provides a simple measure

KEY COMPONENTS OF BIOLOGICAL CRITERIA

✓ Biological Surveys
✓ Classification
✓ Reference Condition
KEY COMPONENTS OF BIOLOGICAL CRITERIA

Biological Surveys

SELECTING COMMUNITY COMPONENTS

Target Species & Taxa

✓ Serve as Effective Indicators of Biological Response to Effects of Human Activity
✓ Represent a Range of Pollution Tolerances
✓ Provide Predictable, Repeatable Results
✓ Are Readily Identifiable by State Personnel
COMMUNITY COMPONENTS

Streams, Small Rivers, Lakes, Estuaries

- Fish
- Macroinvertebrates
- Algae
- Zooplankton

COMMUNITY COMPONENTS

Wetlands

- Birds
- Macroinvertebrates
- Vascular Plants
- Algae
- Amphibians
Bioassessment -- Streams and Small Rivers
Invertebrate community bioassessment using a kicknet

CLASSIFICATION

✓ Identifies Regions of Ecological Similarity from Which To Select Reference Sites.

✓ Biological Conditions Expected to be Similar.
REFERENCE CONDITION

The benchmark for determining biological conditions.

- Regional Reference Sites
- Site-Specific Reference Sites
- Historical Data
- Model-Based Approach
- Expert Opinion
Review Examples of Narrative Biocriteria

Review Examples of Numeric Biocriteria

APPLYING BIOCRITERIA

Sample test sites and compare to biocriteria

- Impaired Condition
 - Diagnose Cause of Impairment
 - Implement Corrections (Continue Monitoring)

- Not Impaired
 - Usually No Action Required (Continue Monitoring)
Stressor Identification

Identifying Unknown causes of biological impairment

APPLYING BIOCRITERIA IN WATER QUALITY STANDARDS

Biological Assessments and Criteria Can Be Used to Better Define and Protect Aquatic Life Uses

- “Bioassessment-based” designated uses can be subcategorized (or tiered) according to reference conditions, restoration potential, human disturbance and management objectives.

- Once *bioassessment-based* designated uses are established, they can be protected by biocriteria.
Range of Biological Conditions

- Natural
- Changes in Structure & Function of Biological Communities
- No Impact from Human Activities
- Minimal
- Moderate
- Major
- Severe

Range of Management Options
(Range of Aquatic Life Uses)

Hypothetical Subcategorized Biologically-Based Aquatic Life Uses

<table>
<thead>
<tr>
<th>Designated Uses</th>
<th>IBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold water salmon fishery/natural spawning</td>
<td>60</td>
</tr>
<tr>
<td>Cold water salmon nursery/rookery</td>
<td>50</td>
</tr>
<tr>
<td>Cold water salmon passage</td>
<td>40</td>
</tr>
<tr>
<td>Seasonal cold water salmon passage</td>
<td>30</td>
</tr>
<tr>
<td>Habitat restoration</td>
<td>20</td>
</tr>
<tr>
<td>Limited aquatic life habitat</td>
<td>10</td>
</tr>
</tbody>
</table>
PROGRAM GOALS

✓ All States use bioassessments to evaluate the health of aquatic life in all waterbodies

✓ Bioassessment data is used to better define aquatic life uses

✓ Quantifiable biocriteria are in all State/Tribal water quality standards to protect aquatic life uses

✓ Biocriteria/bioassessments used to assess the effectiveness of water quality management efforts

✓ Bioassessment data and biocriteria used to better communicate the health of the Nation’s waters

FUTURE DIRECTIONS

• Great Rivers
• Coral Reefs
• Great Lakes
• Intermittent and ephemeral streams
Technical Components of an Adequate Bioassessment Program

Michael Barbour, Tetra Tech, Inc.
Chris Yoder, Midwest Biodiversity Institute
Levels of Rigor for Bioassessment

- Good quality ecological data are integral to effectively answer questions on condition, protection, restoration, etc.
- The rigor and quality of biological data are variable among agencies even though states and tribes use their data to address the same questions.
- Techniques with a low level of rigor will not be able to meet the levels of confidence required to support different decisions.

Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers

<table>
<thead>
<tr>
<th>Condition of the Biotic Community</th>
<th>Natural structure and function of biotic community maintained</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimal changes in structure & function</td>
</tr>
<tr>
<td>2</td>
<td>Evident changes in structure and minimal changes in function</td>
</tr>
<tr>
<td>3</td>
<td>Moderate changes in structure and minimal changes in function</td>
</tr>
<tr>
<td>4</td>
<td>Major changes in structure & moderate changes in function</td>
</tr>
<tr>
<td>5</td>
<td>Severe changes in structure & function</td>
</tr>
</tbody>
</table>

Human Disturbance Gradient

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, BIO 101_03
Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers

1. **Natural structural, functional, and taxonomic integrity is preserved.**
 - Structure and function similar to natural community with some additional taxa & biomass; no or incidental anomalies; sensitive non-native taxa may be present; ecosystem level functions are fully maintained.

2. Evident changes in structure due to loss of some rare native taxa; shifts in relative abundance; ecosystem level functions fully maintained through redundant attributes of the system.

3. Moderate changes in structure due to replacement of sensitive ubiquitous taxa by more tolerant taxa; overall balanced distribution of all expected taxa; ecosystem functions largely maintained.

4. Sensitive taxa markedly diminished; conspicuously unbalanced distribution of major groups from that expected; organism condition shows signs of physiological stress; ecosystem function shows reduced complexity and redundancy; increased build up or export of unused materials.

5. Condition shows signs of physiological stress; ecosystem function shows reduced complexity and redundancy; increased build up or export of unused materials.

6. Anomalies may be frequent; ecosystem functions are extremely altered.

Human Disturbance Gradient

Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers

- **Level 4:** Natural Condition
- **Level 3:** Excellent
- **Level 2:** Pass
- **Level 1:** Fail

Biological Condition Gradient (BCG):

- **Minimal Changes**
- **Evident Changes**
- **Moderate Changes**
- **Major Changes**
- **Severe Changes**

Resolution of Assessment:

- **Highest**
- **Pass**
- **Fail**
- **Lowest**
Level of Bioassessment: Water Quality Management Program Support

Relative degrees to which the four different levels of bioassessment defined by the CALM process support selected water quality management program areas.

<table>
<thead>
<tr>
<th>Basic Reporting</th>
<th>WQS Program</th>
<th>Watersheds/NPS</th>
<th>TMDL/303d</th>
<th>NPDES/Other Permitting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tier 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tier 3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tier 4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

- - - - - Comprehensive fulfills program support role by providing robust and complete assessment including scientific certainty, accuracy and relevancy of condition assessment, and causal associations.
- - - - Capable of providing program support, but cannot provide sufficiently robust, detailed, or accurate assessment information in all cases or at all scales; determination of causal associations may be limited in given instances.
- - - Insufficient to provide the level of detail and resolution needed to go beyond pass/fail assessments; accuracy is limited and little or no resolution for determining severity and magnitude and for causal associations.
--- Inadequate for program support due to limited accuracy, resolution, detail, and power of assessment.

C. Levels of rigor for bioassessment ranging from the lowest (Level 1) to the highest rigor (Level 4). Make a check ☑ in the appropriate box for each topical category:

I. Key Technical Elements for a Bioassessment Program

1. Temporal Coverage
- ☑ No consistent index period
- ☑ Index period for convenience, varies
- ☑ Documented index period, may vary
- ☑ Comprehensive coverage within index period

2. Spatial Coverage
- ☑ Simple design, no statewide coverage
- ☑ “Synoptic” design (8 digit HUC)
- ☑ Rotating basin; single design (8 digit HUC)
- ☑ Statewide; comprehensive rotating basin; multiple designs (11-14 digit HUC)
1. Temporal Coverage

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No index period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sampling can be scattered throughout the year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Index period for convenience in sampling or to match existing programs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sampling outside the index period may be done, but reserved for emergency response monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Well-documented seasonal index period(s), or coverage is comprehensive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sampling outside index period is adjusted for seasonal influences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Well-documented seasonal index period(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Multiple samplings at sites during index period(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Index period(s) based on known ecology to minimize natural variability and maximize gear efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Spatial Coverage

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Individual site survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Up/downstream and Fixed station design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No statewide assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Multiple sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Spatial design limited to a few basins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Synoptic design at 8-digit HUC common</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Well established spatial network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Statewide design using rotating basins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Single design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Well established spatial network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Statewide design using comprehensive rotating basins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Multiple study designs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Reference Conditions

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No formal reference conditions</td>
<td>• Pre-established by professional and based on known ecology of area</td>
<td>• Site-specific or watershed based</td>
<td>• Regional reference conditions for each waterbody ecotype, consisting of sites and/or other means of establishing regional expectations</td>
</tr>
<tr>
<td>• Basis may be presence and absence of key taxa</td>
<td>• Site-specific control or paired watershed approach</td>
<td>• Regional reference sites developed but too few or do not reflect statewide coverage</td>
<td></td>
</tr>
<tr>
<td>• Professional opinion may be used</td>
<td>• Regional sites generally not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* No formal reference conditions</td>
<td></td>
<td>* Site-specific or watershed based</td>
<td></td>
</tr>
<tr>
<td>* Basis may be presence and absence of key taxa</td>
<td></td>
<td>* Regional reference sites developed but too few or do not reflect statewide coverage</td>
<td></td>
</tr>
<tr>
<td>* Professional opinion may be used</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Criteria for Reference Sites

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Best professional judgment (BPJ)</td>
<td>• Based on “best biology”, i.e., BPJ on what best biology would be at reference</td>
<td>• Non-biological criteria supported by narrative descriptors only</td>
<td>• Quantitative descriptors to support non-biological criteria</td>
</tr>
<tr>
<td>• Support from quantitative data lacking</td>
<td>• Minimal non-biological data</td>
<td>• Combine BPJ with narrative description of land use and site characteristics</td>
<td>• Best expectations established for a biological framework</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Phys/chem secondary</td>
</tr>
</tbody>
</table>
5. Natural Classification

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
</table>
| • No partitioning of natural variability in aquatic ecosystems
• Minimal classification limited to watersheds or basins | • Statewide or regional classification based on one stratum | • Classification based on a combination of landscape features and physical habitat structure of waterbody type | • True regional classification that transcends jurisdictional boundaries to strengthen inter-regional classification |

6. Aquatic Resource Classification

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
</table>
| • Classification strata lacking
• Single, general aquatic resource considered throughout waterbody type | • General classification recognizes sub-assemblage attributes, e.g., fishery based coldwater and warmwater streams
• No subcategories | • Well-defined subcategories of aquatic resource with distinctive assemblages
• May only be developed for one ecotype | • Fully partitioned and stratified classification of resource
• All relevant ecotypes addressed and includes full range of BCG |
7. Indicator Assemblages

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
</table>
| • Single assemblage
 • Visual observation of biota
 • Poor taxonomic resolution | • Single assemblage (usually macro-invertebrates)
 • Low taxonomic resolution (family level or higher) | • Single assemblage
 • High data quality and reliable taxonomic resolution to lower levels (genus/species)
 • If multiple assemblages, one is low resolution or used infrequently | • Two or more assemblages
 • High taxonomic resolution to the lowest practical taxon (mostly genus/species)
 • Formal certification program |

8. Sample Collection

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
</table>
| • Cursory documentation of methods, usually not written as SOPs
 • Highly variable methods, relying primarily on best professional judgment (BPJ) | • Textbook methods documented
 • Training consists of short courses (1-2 days) | • Methods detailed for state purposes
 • Formal QA/QC program
 • Rigorous training for new staff; periodic for all staff | • Same as Level 3, but methods cover multiple assemblages
 • Certification program in place |
9. Sample Processing

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Field processing using visual guides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dependent on operator skill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Field processing and enumeration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No estimates of precision or accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• If fish, cursory examination of presence and absence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Laboratory processing of all samples when QC control is high</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Precision and accuracy is known</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Same as Level 3, but methods cover multiple assemblages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Whole samples may be processed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Precision of Assessments

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Precision is not determined</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Capability of indicator to distinguish between human and natural influences is unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Precision is known; enables more consistent sampling and higher precision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Capability of indicator to distinguish between human and natural influences has been determined based on other state or region studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Moderately high precision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Capability of indicator to distinguish between human and natural influences has been documented within state or tribe, but without gradient of stressors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Highest precision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Capability of indicator to distinguish between human and natural influences high and based on a gradient of stressors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11. Ecological Attributes (as per BCG)

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
</table>
| • No linkage to the BCG
• No adherence to the ecological attributes | • Only inferences made to a few simple structural attributes
• Sensitive/tolerant ubiquitous | • Ecological attributes used as foundation
• May not be fully developed
• Surrogate measures used for key functional attributes
• BCG conceptual underpinnings | • Level of rigor adequate to directly or indirectly address ecological attributes
• Multiple assemblages |

12. Biological Endpoints and Thresholds

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
</table>
| • No formal index or community-based endpoint
• Presence/absence of targeted species based on visual assessment
• Attainment thresholds not specified | • Index established for specific water-bodies, but likely not calibrated
• Index relevant to only one assemblage
• Presence/absence based on all taxa
• BPJ thresholds based on single dimension attributes | • Index developed and calibrated for state or region
• Index relevant to only one assemblage
• Attainment thresholds based on discriminant model or distribution of reference sites, or some means of quantifying reference condition | • Indexes for multiple assemblages developed and calibrated for use throughout state or region
• Multiparameter evaluations based on integrated data calibrated to a regional reference condition |
13. Sensitivity

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Coarse method (low signal) detects only high and low values</td>
<td>• Limited to pass/fail determinations of attainment status</td>
<td>• High signal to noise ratio</td>
<td>• Integrated signal able to detect status on an incremental scale</td>
</tr>
<tr>
<td></td>
<td>• No incremental measurement along BCG</td>
<td>• Power to detect 3 or 4 discrete levels on BCG</td>
<td>• Power to detect at least 5 categories of condition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Quantitative support for narrative descriptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 1</td>
<td>Level 2</td>
<td>Level 3</td>
<td>Level 4</td>
</tr>
<tr>
<td>Level 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. Diagnostic Capabilities

<table>
<thead>
<tr>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No diagnostic capability due to lack of resolution</td>
<td>• Coarse indications of response via assemblage attributes</td>
<td>• Development of indicator guilds and other aggregated attributes</td>
<td>• Response patterns are most fully developed and supported by case studies</td>
</tr>
<tr>
<td>• No interpretive experience</td>
<td>• Little or no supporting analysis across spatial and temporal scales</td>
<td>• Usually involves refined taxonomy</td>
<td>• Involves refined taxonomy for two or more assemblages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Supported by analysis of comprehensive datasets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bioassessments and Biocriteria Program Development Timeline

Start-Up Tasks: Logistics
- Acquire Staffing:
 - Professional biologists with expertise & training
 - Database manager
 - Interns/technicians (field work, lab tasks)
- Acquire Facilities & Equipment:
 - Outfit laboratory and field facility
 - Office accommodations
 - Database support infrastructure
- Methods Development:
 - Review and select candidate methods and protocols
 - Consider MOD/DQO needs
 - Test methods for applicability
 - Analyze test results – select methods

Start-Up Tasks: Implementation
- Initiate Field Sampling:
 - Review spatial designs
 - Develop QA/QC and QAPP
 - Develop sampling plans in accordance with monitoring strategy
 - Pilot assessments
- Classification Issues:
 - Consider spatial stratification issues
 - Develop and test reference condition approach
 - Select and sample reference sites
 - Develop index development and calibration strategy

Program Implementation
- Biocriteria Development:
 - Select candidate metrics and/or assessment tools
 - Develop refined uses - narratives
 - Test metrics and develop calibrated indices
 - Evaluate via bioassessments
- Water quality Program Support:
 - Develop capacity to support WQ programs (WQS/UIAs, TMDLs, permits, planning)
 - Fully functioning bioassessment program supports WQS (UAAs, aquatic life use support)
 - Formalize water quality program support as capacity is developed

Program Maintenance
- Biocriteria Development:
 - Refine metrics and develop calibrated indices
 - Develop reference benchmarks for calibrated indices according to classification scheme and by major aquatic ecotype
- Water quality Program Support:
 - Fully functioning bioassessment program supports WQS (UAAs, aquatic life use support) and basic program needs
 - Program development should be fully initiated – e.g., integrated chemical, physical, and biological database supports criteria & policy development

Continuously evaluate program
Quality Improvement Process
Evaluate effectiveness of initial decisions – make needed adjustments

BIO 101

National Biological Assessment and Criteria Workshop
Advancing State and Tribal Programs

Coeur d'Alene, Idaho
31 March – 4 April, 2003

Biological Assessments, Biocriteria & Water Quality Standards in Ohio

Presented by
Chris Yoder, Midwest Biodiversity Institute
Aquatic Bioassessments by Ohio EPA

Where
- Mainly rivers, streams, and small waterways
- In use and development for Lake Erie, Ohio River, and wetlands

What
- Fish, macroinvertebrates, physical habitat
- Sediments, water quality, fish contamination
- Biomarkers, other tools as developed

Why
- Provide empirical information for water quality management and decision-making
- Determine status of Ohio's aquatic resources
- Assure that waters are correctly classified

CORE INDICATORS
- Fish Assemblage
- Macroinvertebrates
- Periphyton
 (Use Community Level Data From At Least Two)

Physical Habitat Indicators
- Channel morphology
- Flow
- Substrate Quality
- Riparian

Chemical Quality Indicators
- pH
- Temperature
- Conductivity
- Dissolved O₂

For Specific Designated Uses Add the Following:

AQUATIC LIFE
Base List:
- Ionic strength
- Nutrients, sediment
Supplemental List:
- Metals (water/sed.)
- Organics (water/sed.)

RECREATIONAL
Base List:
- Fecal bacteria
- Ionic strength
Supplemental List:
- Other pathogens
- Organics (water/sed.)

WATER SUPPLY
Base List:
- Fecal bacteria
- Ionic strength
- Nutrients, sediment
Supplemental List:
- Metals (water/sed.)
- Organics (water/sed.)
- Other pathogens

HUMAN/WILDLIFE CONSUMPTION
Base List:
- Metals (in tissues)
- Organics (in tissues)

ITFM Indicators
Ohio EPA 5-Year Basin Approach for Monitoring & Assessment

- Rotating basin approach for determining annual monitoring activities.
- Correlated with NPDES permit schedule.
- Supports annual WQS use designation rule-making.
- Aligned with 15 year TMDL schedule.

Sugar Creek Subbasin: Example of Geometric Site Selection Process

- Used in TMDL development 5 year basin watersheds
- Increased miles of assessed streams & rivers annually
- Resolve undesignated streams
- Close 305b/303d listing gaps
- Generate broader database for development of improved tools
- Part of 15 yr. TMDL development schedule beginning in 1998
- Augmented by 5 -year basin approach process (1980-1997)
- Standardized biological, chemical, physical tools and indicators
Ohio EPA Macroinvertebrate Methods: Field Procedures

Artificial Substrates are Set for a Six-Week Exposure (July-Sept. Index Period)

Artificial Substrates are Placed in Run Habitat with Constant Current

The Artificial Substrates are Retrieved, Preserved, and Returned to the Laboratory for Processing

A Qualitative Dip Net/Hand Pick Method is Used to Supplement the Artificial Substrates or as a Stand Alone Evaluation

Ohio EPA Macroinvertebrate Methods: Laboratory Procedures

After Cleaning and Sorting, the Entire Sample is Scanned and Picked

Standard Procedures are Used to Produce Subsamples of Major Taxa Groups

Portion of a Sample Ready for Identification

Identification to the Lowest Taxonomic Level Practicable is a Major Data Quality Objective
Macroinvertebrate Assemblage Assessment: Ohio EPA Approach

- Standardized & Representative Sampling - artificial substrates & qualitative dip-net/handpick methods, mid-June to late-September.
- Taxa Richness & Relative Abundance - counts and numbers per unit area (sq. ft.).
- Data Quality Objectives - lowest taxonomic level practicable for common orders/families (genus or species), standard keys.
- Key Component of Biocriteria - ICI and component metrics
- Basin/Sub-basin Sampling Design - longitudinal and watershed scale interpretation of results.
- Watershed Scale Considerations - ICI metrics are calibrated against stream and river size.
- Experienced Biologists - detailed familiarity with regional fauna, natural history, response signatures, impact types.

Fish are a widely identifiable component of aquatic systems and are valued for their recreational uses. Most species, however, are more obscure, and comprise the second most endangered group.
Ohio EPA Fish Assemblage Methods: Field Procedures

- Wading/Headwater Methods - effort is standardized by distance sampled.
- Boat Methods - logistics can be intensive.
- Wading Methods - effort is standardized by distance sampled.
- All samples are processed in the field.

Ohio EPA Fish Assemblage: Ohio EPA Approach

- Standardized & Representative Sampling - stratified pulsed D.C. electrofishing methods, mid-June to mid-October.
- Relative Abundance - numbers and weight (biomass) per unit distance (effort).
- Data Quality Objectives - genus/species based on regional ichthyology keys and AFS nomenclature.
- Key Component of Biocriteria - IBI, MIwb, and component metrics.
- Basin/Sub-basin Sampling Design - longitudinal and watershed scale interpretation of results.
- Watershed Scale Considerations - headwaters, wading, and boat sites; metric calibration accomplished for each strata.
- Experienced Biologists - regional fauna, natural history, response signatures, impact types.
The Qualitative Habitat Evaluation Index (QHEI)

QHEI Includes Six Major Categories of Macrohabitat

- Substrate - types, origin, quality, embeddedness
- Instream Cover - types and amounts
- Channel Quality - sinuosity, development, stability
- Riparian/Bank Stability - width, quality, bank erosion
- Pool/Riffle/Run - max. depth, current types, morphology, substrate embeddedness
- Gradient - local gradient (varies by drainage area)

Source: *The Qualitative Habitat Evaluation Index* (Rankin 1989)
QHEI: Qualitative Habitat Evaluation Index - I

What it is:
- A visual, qualitative method of measuring habitat quality
- Aids in designating aquatic life uses; *may be conclusive in obvious cases*
- A set of stressor variables - it aids in assessing causes of impairments defined by the biological criteria
- Generally correlated with biological integrity
- Reach-level habitat quality is an important covariate
- Depends on standardized definitions of habitat types (training is very important)

Aquatic Life Designated Uses

Ohio Water Quality Standards
- Uses are portrayed as narratives.
- Chemical and biological criteria are assigned to each in accordance with the attributes ascribed by the designated use narrative.

Uses Are Assigned Based on Demonstrated Potential (in order of importance)
- Attainment of the biological criteria.
- Habitat assessment demonstrates the potential to attain the designated use.
- Attainment of uses is tracked in State 305[b] reports.
Aquatic Life Use Designations: Ohio WQS

Based on Biological Community Attributes

- Exceptional Warmwater Habitat (EWH): preserve & maintain existing high quality.
- Warmwater Habitat (WWH): basic restoration goal for most streams.
- Modified Warmwater Habitat (MWH): attainable condition for streams under drainage maintenance or other essentially permanent hydromodifications (e.g., impoundments).
- Limited Resource Waters (LRW): essentially irretrievable, human induced (e.g., widespread watershed modifications) or naturally occurring conditions (e.g., ephemeral flow).
Warmwater Habitat (WWH)

Bokengehalas Cr. (Logan Co.)
E. Corn Belt Plain Ecoregion

Powell Creek (Defiance Co.)
Huron/Erie Lake Plain

Warmwater Habitat (WWH)

Wolf Creek (Summit Co.)
Erie/Ontario Lake Plain Ecoregion

Duck Cr. Subbasin (Wash. Co.)
W. Allegheny Plateau Ecoregion

Modified Warmwater Habitat (MWH)

Drainage Maintenance is Common in Western and Northwest Ohio.
MWH - Channelization

Low-head Dam on the Sebato R.
(Franklin Co): MWH - Impounded

Non-Acidic Runoff From Abandoned Mine Lands Results in Severe Sedimentation: MWH - Mine Drainage

Creek Club With Blackspot: MWH Streams are Predominated by Tolerant Species
Aquatic Life Designated Uses

Ohio Water Quality Standards

- Uses are portrayed as narratives.
- Chemical and biological criteria are assigned to each in accordance with the attributes ascribed by the designated use narrative.

Uses Are Assigned Based on Demonstrated Potential (in order of importance)

- Attainment of the biological criteria.
- Habitat assessment demonstrates the potential to attain the designated use.
- Attainment of uses is tracked in State 305[b] reports.
Use Attainability Analysis I: Are CWA Goal Uses Attainable?

U.S. EPA regulations allow lower than CWA goal uses where precluded by:

- naturally occurring pollutant levels;
- natural flow conditions (i.e., ephemeral)**;
- human-induced conditions which cannot be remediated;
- hydrological modifications (dams, diversions, channel modifications) which cannot be operated in a manner consistent with the CWA goal use;
- natural physical features (substrate, flow, depth);
- controls to attain use would cause widespread, socioeconomic impacts.

**- does not apply when flow is augmented by an effluent discharge.

Source: 40 CFR Part 131.10 (g)(1-6)

Use Attainability Analysis II: Process and Information Requirements**

Use attainability analysis requires the following information and knowledge:

- existing status of waterbody based on biocriteria;
- habitat assessment to evaluate potential;
- reasonable relationship between impaired state and precluding activity based on assessment of multiple indicators used in appropriate roles;
- recommendation subject to WQS rulemaking process
- < CWA uses reviewable every three years - a "temporary" designation.

**- All data collection and analysis must conform to Ohio WQS and Five-Year Monitoring Strategy data and design quality objectives.
Important Considerations for Biological Criteria Programs

Six criteria that programs should satisfy:

- The measures used must be biological.
- The measures must be interpretable at or extend to multiple trophic levels.
- The measures must be sensitive to the conditions being assessed.
- The response range must be suitable for intended uses.
- The measures must be reproducible and sufficiently precise.
- The variability of the measures must be low enough to detect and quantify changes.

What to Measure? How to Decide?

Biological Condition

Stressor Gradient

[Effect of Human Activity]

Relative Abundance?

Trophic Structure?

Biomass?

Population Parameters?

Taxa Richness?

Productivity?

Genetic Diversity?

Feeding Groups?

Biomarkers?

What to Measure? How to Decide?
Symptoms of Ecological Degradation

A Partial List:
- Reduced populations of native species.
- Fewer size (age) classes.
- Reduced number of intolerant species.
- Increased proportion of exotic species.
- Reduced proportion of ecological specialists.
- Simplified trophic web and interactions.
- Increased incidence of serious disease & anomalies.

Index of Biotic Integrity (Karr 1981)

12 Metrics
- Species richness
- #Darter species
- #Sunfish species
- #Sucker species
- %Intolerant species
- %Green sunfish
- %Omnivores
- %Insectivores
- %Top Carnivores
- %Hybrids
- %Diseased individuals
- Number of Fish

Community Composition
Environmental Tolerance
Community Function
Community Condition

- 5,3,1 metric scoring categories.
- 12 to 60 scoring range.
- Calibrated on a regional basis.
- Scoring adjustments needed for very low numbers.
Basic Premise of IBI Type Measures

- Least impacted biological systems have distinctive structural and functional attributes.
- Some attributes can be measured in the field and aggregated into metrics.
- Departure of metrics from a reference condition is correlated with the degree (severity) of a perturbation.
- Synthesis of multiple, representative metrics reflects the overall integrity of the community.

Invertebrate Community Index (Ohio EPA 1987; DeShon 1995)

- Taxa Richness
- #Mayfly taxa
- #Caddisfly taxa
- #Dipteran taxa
- %Mayflies
- %Caddisflies
- %Tanytarsini Midges
- %Other Diptera/Non-Insects
- %Tolerant taxa
- Qualitative EPT taxa

- 6,4,2,0 metric scoring categories.
- 0 to 60 scoring range.
- Calibrated on regional basis.
- Scoring adjustments needed for very low numbers of specific taxa.
Key Invertebrate Metrics: Intolerant & Specialist Taxa

- mayflies
- stoneflies
- water penny
- bivalves
- alderflies
- dobson flies
- snipe flies

Expected Response to Stress: Declines in abundance and proportion of assemblage

Key Invertebrate Metrics: Highly tolerant taxa

- Chironomid midges
- leeches
- worms
- pouch snails

1 There are at least three distinct responses exhibited by the Chironomidae; sensitive (*Tanytarsini*), facultative (*Glyptotendipes*), and toxic tolerance (*Cricotopus*); taxonomic resolution is needed at genus level.

Expected Response to Stress: Increased abundance or proportion of assemblage
Metric Behavior Along the Stressor Gradient

METRIC VALUE

Stressor Gradient

[Effect of Human Activity]

HIGH

LOW

Native Taxa

Highly Tolerant Taxa

Intolerant Taxa

DELT Anomalies

Aquatic Life Use
(subcategories by resource type)

Lotic Systems

Springs & Seeps

Primary HW Streams

Headwater Streams

Wadeable Streams

Large Rivers

Great Rivers

Lentic Systems

Glacial Lakes

Reservoirs

Great Lakes

Wetlands

Marine Systems

Near Coastal

Estuary

Coral Reef
OHIO SPECIFIC TEMPLATE FOR STRATIFICATION

Warmwater Lotic Systems

Primary HW Streams (<1-3 mi²)

Headwater Streams (1-20 mi²)

Wadeable Streams (20-300 mi²)

Large Rivers (>200-300 mi²)

Great Rivers (>6000 mi²)

Class A

Class B

Class B Modified

Class C

EWH

WWH

MWH

USH

LRW

2 Types:
-Channel mod.
---Non acidic MD

2 Types:
-Channel mod.
---Non acidic MD

2 Types:
-Channel mod.
---Non acidic MD

1 Type:
-Other (case specific)

Shoreline Habitat Types (A,B,C)

Modified Habitat

Adopted in WQS

Assessment Tool

ORSANCO

Shoreline Habitat Types

Ohio Specific Template for Stratification

OHIO EPA MODIFIED IBI METRICS

HEADWATER SITE TYPE (<20 SQ. MI.)

WADEABLE SITE TYPE (20-300 MI²)

BOATABLE SITE TYPE (200-6000 MI²)

1. Total Native Species X X X

2. #Darter Species X

#Darters + Sculpins X*

%Round-bodied Suckers

3. #Sunfish Species X X

#Headwater Species X*

%Pioneering Species X*

4. #Sucker Species X X

#Minnow Species

5. #Intolerant Species X X X

#Sensitive Species X*

6. %Tolerant Species X X X

7. %Omnivores X X X

8. %Insectivores X X X

9. %Top Carnivores X X X

10. %Simple Lithophils X* X* X*

11. %DELT Anomalies X X X

12. Number of Individuals X X X

* - Substitute for original IBI metric described by Karr (1981) and Fausch et al. (1984)

March 31 – April 4, 2003 National Biological Assessment and Criteria Workshop, BIO 101_06
<table>
<thead>
<tr>
<th>OHIO EPA MODIFIED IBI METRICS</th>
<th>BOATABLE SITE TYPE (Inland Rivers)</th>
<th>LAKE ERIE LACUSTUARY (Harbors/Rivers)</th>
<th>LAKE ERIE NEARSHORE (Shoreline)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Total Native Species X</td>
<td>X X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2. #Darter Species X*</td>
<td>X</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>%Round-bodied Suckers X*</td>
<td>X*</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>Benthic Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. #Sunfish Species X</td>
<td>X</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>Centrarchid Species X*</td>
<td>X*</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>4. #Sucker Species X</td>
<td>X*</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>Cyprinid Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#Phytophilic Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. #Intolerant Species X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>%Green Sunfish X*</td>
<td>X*</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>%Tolerant Species X*</td>
<td>X*</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>6. %Omnivores X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>%Insectivores X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>%Phytophilic Individuals X*</td>
<td>X*</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>%Lake Species</td>
<td></td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>7. %Omnivores</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>%Intolerant Species</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>%Insectivores</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>%Phytophilic Individuals</td>
<td>X*</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>%Lake Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. %Top Carnivores X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>10. %Hybrids X*</td>
<td>X*</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>%Simple Lithophils</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%Nonindigenous Species X*</td>
<td>X*</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>11. %DELT Anomalies X**</td>
<td>X**</td>
<td>X*</td>
<td></td>
</tr>
<tr>
<td>12. Number of Individuals X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

* - Substitute for original IBI metric described by Karr (1981) and Fausch et al. (1984)
** - Excludes highly tolerant species in all and additionally gizzard shad in the L. Erie IBIs.
Ohio IBI Calibration & Biocriteria Derivation Process

I. Select & sample reference sites
II. Calibration of IBI metrics
III. Calibrated IBI modified for Ohio waters
IV. Establish ecoregional patterns/expectations
V. Derive numeric biocriteria: Codify in WQS
VI. Numeric biocriteria are used in bioassessments

Data Manipulation Hierarchy of Field-Collected Biological Samples

Rating
Interpretive Criteria
Aggregated “Index” Bioassessment Score
METRICS
Raw Data
Ohio Biological Criteria: Adopted May 1990
(OAC 3745-1-07; Table 7-14)

Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers
(10/22 draft)

Condition of the Biotic Community

1. **Natural structural, functional, and taxonomic integrity is preserved.**

2. Structure and function similar to natural community with some additional taxa & biomass; no or incidental anomalies; sensitive non-native taxa may be present; ecosystem level functions are fully maintained.

3. Evident changes in structure due to loss of some rare native taxa; shifts in relative abundance; ecosystem level functions fully maintained through redundant attributes of the system.

4. Moderate changes in structure due to replacement of sensitive ubiquitous taxa by more tolerant taxa; overall balanced distribution of all expected taxa; ecosystem functions largely maintained.

5. Sensitive taxa markedly diminished; conspicuously unbalanced distribution of major groups from that expected; organism condition shows signs of physiological stress; ecosystem function shows reduced complexity and redundancy; increased build up or export of unused materials.

6. Extreme changes in structure; wholesale changes in taxonomic composition; extreme alterations from normal densities; organism condition is often poor; anomalies may be frequent; ecosystem functions are extremely altered.

Human Disturbance Gradient

LOW — High
Biological Integrity: Putting Theory Into Practice

Essential Elements of the Regional Reference Site Approach

- Biological Performance - need ways to measure (e.g., IBI, ICI, BI, RIVPACS, etc.).
- Natural Habitats - come to grips with the attainability issue (e.g., ‘least impacted’ reference sites).
- Region - need to stratify and account for natural variability (e.g., ecoregions and tiered uses).
- Reference site ‘re-sampling’ to account for broad scale, long term changes in attainable conditions.

The Regional Reference Site Approach: The Role of Stratification

Recognizing the relative importance of landscape, geographic, physical, and socioeconomic factors in deriving regionally relevant benchmarks or criteria

Inter-Regional Factors:
- Ecoregions - overall synthesis of taxonomy, biogeography, diversity, ecological function, and attainability.
- Water Quality Standards - define goals and criteria.

Intra-Regional Factors:
- Site-Specific Stratification - stream size (drainage area, width), gradient, temperature, elevation, latitude etc.
Biological Criteria “Maintenance”

- Reference sites “re-sampling” linked to basin monitoring cycle (10 yr. process).
- Keeps tabs on reference condition change.
- Update consistent with new technologies.
- Template for developing stressor thresholds and gradients.
- Formally linked to WQS via tiered designated use descriptions and derivation system.

Coping With Biological Data Variability

- Compress Variability: use multi-metric measures (e.g. IBI, ICI, etc.).
- Stratify Variability: use ecoregions (or subsets) and tiered aquatic life use classification system.
- Control Variability: select efficient sampling methods that yield informative and consistent results.
Resolution and Detail in WQS and Monitoring
and Assessment Affect Overall WQ
Management Program Effectiveness

<table>
<thead>
<tr>
<th>Program Attribute</th>
<th>Least Accurate</th>
<th>Most Accurate</th>
</tr>
</thead>
<tbody>
<tr>
<td>WQS/Des. Uses:</td>
<td>General Uses (Generic AQLU)</td>
<td>Refined Uses (Tiered AQLU)</td>
</tr>
<tr>
<td>WQ Criteria:</td>
<td>Simple, Chemical (Conventionals)</td>
<td>Chemical & Biological (Acute/Chronic, Biocriteria)</td>
</tr>
<tr>
<td>Monitoring:</td>
<td>Fixed Stations</td>
<td>Rotating Basins (Stratified, Probabilistic)</td>
</tr>
<tr>
<td>Indicators:</td>
<td>Chemical, Narrative</td>
<td>Chem., Phys., Biological (Numeric, Calibrated)</td>
</tr>
<tr>
<td>Detail:</td>
<td>Coarse (Low Signal)</td>
<td>Refined (Integrated Signal)</td>
</tr>
<tr>
<td>Resolution:</td>
<td>Pass/Fail (NoIncrements)</td>
<td>Incremental (Continuous Scale)</td>
</tr>
</tbody>
</table>