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FOREWORD

Section 304(a)(1l) of the Clean Water Act of 1977 (P.L. 95-217)
requires the Administrator of the Environmental Protection Agency to
publish water quality criteria that accurately reflect the latest
scientific knowledge on the kind and extent of all identifiable effacts
on health and welfare that might be expected from the presence of pollutaats
in any body of water, including ground water. This document is a revision
of propused criteria based upon coasideracion of comments received from
other Federal agencies, State agencies, special interest groups, and
individual scientists. Criteria contained in this document replace
any previously published EPA aquatic life criteria for the same pollutant(s).

The term "water quality criteria" is used in two sections of the
Clean Water Act, section 304(a)(l) and section 303(c¢)(2). The term has a
differeat program impact ia each section. In section 304, the term
represents a non-regulatory, scientific assessment of ecological effects.
Criteria presented in this document are such scientific assessments. If
water quality criteria associated with specific stream uses are adopted
by a State as water quality standards under section 303, they become
enforceable maximum acceptable pollutant concentrations in ambient waters
within chat State. Water quality criteria adopted in State water qualxty
standards could have the same numerical values as criteria developed
under section 304. However, in many situations States might want to adjust
water quality criteria developed under section 304 to reflect local
environmental conditions and human expusure patterns before incorporation
into water quality standards. It is not until their adoption as part of
State water quality standards that criteria become regulatory.

Guidelines to assist States in the modification of criteria presented
ian this document, in the development of water quality standards, and 1in
other water-related programs of this Agency, have been develuped by EPA.

William A. Whittington
Director
Office of Water Regulacions and Standards

il



ACKNOWLEDGMENTS

John G. Eaton

(freshwater author)

Environmental Research Laboratory
Duluth, Minnesota

Charles E. Stephan

(document coordinator)

Environmental Research Laboratory -
Duluth, Minnesota

Clerical Support: Shelley A. Heintz
Terry L. Highland
Nancy .J. Jordan
Diane L. Spehar
Delcena R. Nisius

iv

Jeffrey L. Hyland

Robert S§. Carr

(saltwater authors)

Battelle New England Laboratory
Duxbury, Massachusetts

David J. Hansen

(saltwater coordinator)
Environmental Research Laboratory
Narragansett, Rhode Island



CONTENTS

Foreword

Acknowledgments . . . . .

Tables . . - -« « =« « « « =

Incroduction -« .« « « + « o 4 4 4 e e o

Acute Toxicity to Aquatic Animals

Chronic Toxicity to Aquatic Animals

Toxicity to Aquatic Plants . . . . . . .
Bioaccumulation . . . . .« « « « .« o
Other Data . . . . « +« « &

Unused Data . . « « « « « + + + « o o =
SUMMATY .+ =« + « o+ 4 o+ o4 o= s ow e
Sa:ional Criteria . . « + « « « « « &
References . . « « « « « o o = & & s &

Page

Lil

iv

vi

11
13
13
18
20
22

23

59



TABLES

Acute Toxicity of Toxaphene to Aquatic Animals

Chronic Toxicity of Toxaphene To Aquatic Animals

Ranked Genus Mean Acute Values with Species Mean Acute=Chronic
RACIOS . .+ + « & « o & & & o o e e e e e e

Toxicity of Toxaphene to Aquatic Plamts . . . . . . . .
Bioaccumulation of Toxaphene by Aquatic Organisums

Other Data on Effects of Toxaphene on Aquatic Organisms . . .

vi

39
44
45

49



Introduction®

Toxaphene first became commercially available in 1948 under the trade
name "Hercules 3956" and has been used in various forms, such as emulsifiable
coacentrates, wettable powders, dusts, and granular baits. Toxaphene is
produced by the chlorination of camphene, resulting in a mixture of at
least 175 separate components, mostly polychlorinated camphenes and bornanes,
with an average chlorine content of 67 to 69% (Casida et al. 1974; Holmstead
et al. 1974; Pollock and Kilgore 1978). The technical-grade product is an
amber, waxy solid with a vapor pressure of 0.17 to 0.4 mm Hg at 25°C, a
melting point range of 65 to 90°C, and z mild terpene odor. Its average
empirical formula is CjgH]gClg (molecular weight = 414) and its reported
solubility in water ranges from 37 ag/L (Lee et al. 1968) to over 500 ag/L
(Paris et al. 1977). It is slowly dechlorinated photolitically (Callahan
et al. 1979) and by heat at about 120°C; breakdown is accelerated by
alkaline conditions and by iron catalysis.

Toxaphene was the most heavily used pesticide in the U.S. during the
1960s and 1970s, with annual applications totalling many millions of
kilograms (Pollock and Kilgore 1978; Ribick et al. 1982). It was frequently
mixed with DDT, methyl parathion, and other pesticides to improve its
cffectiveness. It has been employed against insect pests of cottoam, tobacco,
forgsts, turf, ornamental plants, grains, vegetables, and livestock, most

heavily in the southern U.S. and in California. Toxaphene was used as a

* An understanding of the "Guidelines for Deriving Numerical National Water
Quality Criteria for the Protection of Aquatic Organisms and Their Uses"
(Stephan et al. 1985), hereafter referred to as the Guidelines, and the
response to public comment (U.S. EPA 1985a) is necessary in order to

understand the following text, tables, and calculations.



replacement in many of the former uses of DDT, after it was banned ian L971.
In 1976 toxaphene was close behind methyl parathion as the second most
heavily used insecticide in the "delta states'" of Arkansas, Louisiana,

and Mississippi (0.2 million kilograms) and was the sixth most heavily used
insecticide in the corn belt (0.2 million kilograms) (Schmitt and Winger
1980). Use in California in the 1970s averaged 1.7 million kilograms per
year (Cohen et al. 1982). In addition, 0.7 million kilograms was applied
to a wide range of major agricultural crops in 12 north-central states in
1978 (Acie and Parke 1981) and 0.5 million kilograms in 1981 (Zygadlo 1982).
Toxaphene's relatively low toxicity to honey bees compared to that of many
other insecticides favored its agricultural use (Eckert 1949). Only very
small quantities of toxaphene have been used agriculturally ia Canada
(Department of National Health and Welfare 1977). It was also used in the
1950s and early 1960s by fisheries personnel in several U.S. states and
Canadian provinces to remove unwanted fish from lakes and ponds. This use
was discontinued or prohibited when an unexpectedly high persistence was
discovered ia some lakes.

The U.S. EPA cancelled the registration of toxaphene for all uses in
November, 1982, except for treatment of cattle and sheep for scabies, of
pineapples for mealybug and gummosis moth, of bananas for weevils, and for
emergency treatmeat of cottom, corm, and small grains for armyworms, cutworms,

“and grasshoppers. Some existing stocks of cancelled products could be sold
and used according to label specifications through December 31, 1986, and
all other stocks through 1983. Nor-Am Agricultural Products, Iac., the

principal North American manufacturer, discontinued production in 1982.



The estimated use of roxaphene in 1982 was 4.l million kilograms (personal
communication from Robert Hitch, U.S. EPA, Washington, DC to Larry Fink,

U.S. EPA, Chicago, IL). The reported U.S. stocks totalled about 6 million
kilograms in 1983 and Nor-Am reported it still had about 3.6 million kilograms
until 1985 (personal communication, Jay Ellenberger, U.S. EPA, Washington,
DC). The Canadian registration for all pesticidal uses of toxaphene was
revoked in October, 1980, except for a minor use by veterinarians for
treatment of hogs for lice.

Capillary gas chromatography, sometimes in combination with mass
spectrometry, is the most frequently used analytical method for characterization
and quantitation of toxaphene in environmental samples (Ribick et al. 1982).
A typical toxaphene gas chromatogram contains many peaks, a few of which
are selected to distinguish toxaphene from other possible environmental co-
contaminants. The ideatification and quantification of toxaphene in water
and fish tissues is complicated by chaages in the numbers and relative
sizes of constituent peaks because of their differing rates of degradation,
sorption, and volatilization in the eavironment .

Chénges in eavironmental sample chromatograms as compared to reference
standard chromatograms have led some analysts to refer to their values as
"toxaphene-like" substances, although the prevailing uncertainty in
identification using the iatesc analysis techaiques is small. Durkin et
al. (1979) reported a lower limit of detection of about 5 to l0 ng of toxaphene
by several GC detection methods, but more recent measurements down to 1l to
2 ng are not uncommon. Concentrations have been quantitatively measured
down to 0.1 ag/g in fish tissues (Ribick et al. 1982) and down to 0.0l .g/g

in extracted lipid (Wideqvist et al. 1984).



The compositional changes that occur in the field probably also mean
that field toxicity differs to some unknown extent from toxicity determined
in laboratory tests using technical-grade toxaphene. Using mice, houseflies,
and goldfish, Khalifa et al. (1974), Saleh et al. (1977), and Turner et al.
(1975,1977) demonstrated that different toxaphene components have substantially
different toxicities. Toxaphene that had “"weathered" for 10 months in a
lake was altered chemically (diminution of late eluting peaks) and was
somewhat less toxic to fish than the original formulation (Lee et al. 1977).
1n contrast, Harder et al. (1983) fouad that sediment-degraded products of
toxaphene were more toxic than the parent material to some saltwater fishes.

Applications of toxaphene to lakes for the purposes of fisheries
management have provided substantial amounts of data concerning its aquatic
fate and effects. Reports are available on the treatment of water bodies
in at least a dozen states and three Canadian provinces. Most of these
studies were conducted to determine the persistence of toxaphene in lakes
and to determine how soon lakes could be restocked after treatment to
eliminate uawanted species of fish. Treatment concentrations were usually
between 5 and 200 pg of toxaphene per liter of lake water, with higher
concentrations being recommended for warmer, shallower, and more turbid
lakes (Rose 1958). Persistence of toxicity to fish was highly variable,
ranging from a few weeks (e.g., Mayhew 1959) to greater than five years in
Miller Lake, Oregon (Terriere et al. 1966). Concentrations of toxaphene in
water typically dropped rapidly within a day or two after application due
to sorption to suspended particulates or sediment (Veith and Lee 1971).
Concentrations then diminished much more slowly for an indefinite period
(Rallman et al. 1962). Toxaphene persisted longest in hypolimnetic areas

of the most oligotrophic lakes (Stringer and McMynn 1960; Terriere et al.
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1966), although it was detected at 1 to & ug/L for up to 10 years after it
was applied to shallow eutrophic lakes in Wisconsin (Johnson et al. 1966).

Various studies (e.g., Chandurkar and Matsumura 1979; Chandurkar et
al. 1978; Hughes et al. 1970; Isensee et al. 1979; Saleh etlal. 1977) have
demonstrated that toxaphene can be metabolized or degraded both aerobically
and anaerobically. Quantitative data on degradation in water are lacking
although it is obviously very slow under some conditions. Smith and Willis
(1978) observed a rapid disappearance of toxaphene from Mississippi soil
under anaercbic laboratory conditions, but it was not determined whether
the disappearance was due to binding to soil particles, biological breakdown,
or other factors. Nash and Woolson (1967) estimated the half-life of
toxaphene to be ll years in soil. Toxaphene is not readily desorbed back
into water from contaminated sediments (Veith and Lee 1971), although it
can be cycled within aquatic ecosysteams :hrﬁugh the beathos-water coluan
food web connections (Rallman et al. 1962; Rice and Evans 1984). Concentrations
approaching 2,000 mg/kg were found in an estuary adjacent to a toxaphene
plant discharge, and oysters two miles away had concentrations as high as 6
mg/kg (Durant and Reinold 1972). .

In addition to sharply elevated concentrations in air in the immediace
vicinity of applications (e.g., Sieber et al. 1979; Stanley et al. 1971),
airborne tramnsport of toxaphene over several hundred kilometers has also
been observed. Bidleman and Olney (1975) measured concentratiomns in the
air over the northeastern U.S., presumably carried from cotton growing
areas of the southera U.S., that were more than 10 times those of other
pesticides reported from the same areas. Ohlendorf et al. (1982) detected
:oxaphﬁne residues in the eggs of 15 of the 19 species of island-nesting

Alaskan sea birds they examined. Zell and Ballschmiter (1980) found residues



in fish (0.068 to 3.5 mg/kg of extractable lipid) collected from pristine
sites in the Tyrolian Alps, Northwest Ireland, Caspian Sea, and the North
Atlantic, North Pacific, and Antarctic Oceans. They suggested that such
wide distribution of toxaphene residues has created "an overall global
pollution larger than that by PCB."

Rice et al. (Manuscript) monitored atmospheric concentrations of
toxaphene in the summer and fall of 1981 at four locations between Greenville,
Mississippi, and northern Lake Michigan. Several lines of evidence indicated
the cotton belt as a source of toxaphene in Lake Michigan: a decrease
in aqumber of matching GC chromatogram peaks from south to north; a reduction
in concentrations (7.39 ng/m3 in Greenville, 1.18 ng/m3 in St. Louis, 0.27
ng/m3 at Lake Michigan) from south to north; corresponding temporal
concentration patterns (all higher in summer); and a net south to north
wind flow pattern. The authors estimated a total toxaphene flux to Lak;
Michigan of 3,360 to 6,720 kg in 1981. Agricultural use.of toxaphene in
the north central states has been proposed as another possible source. No
{aformation could be located on current use of toxaphene in Mexico, or
Central or South America; therefore the possibility of long-range transport
from there to the U.S. is unfathomable. However, facilicies for the
production of toxaphene are known to have existed in these areas (persoanal
communication, Office of Pesticide Programs, U.S. EPA).

Because toxaphene is a mixture of maay organic chemicals, "pure"
toxaphene has many components and is the same as "technical-grade toxaphene."
Thus the term "active ingredient" is interpreted to mean "techaical-grade
toxaphene," that is, "toxaphene." The criteria presented herein supersede
previous aquatic life water quality criteria for Lox;phene (U.S. EPA
1976,1980) because these aew criteria were derived using improved procedures
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and additional informa:ion} Whenever adequately justified, a national
criterion may be replaced by a site-specific criterion (U.S. EPA 1983a),

wnich may include not only site-specific criterion concentrations

(U.S. EPA 1983b), but also site-specific durations of averaging periods and
site-specific frequencies of allowed excursions (ﬁ.S. EPA 1985b). The latest
comprehensive literature search for intormation for this document was conducted

in July, 1986; some more recent information might have been included.

Acute Toxicity to Aquatic Animals

Acute toxicity data that are acceptable for deriving water quality criteria
are presented in Table l. Freshwater data are listed in order of phylogeny,
then from lowest to highest temperature within a species, and then from
youngest to oldest life stage at each test temperature. For both channel
catfish (Table 1) and the leopard frog (Table 6), early exogenously feeding
life stages were more seasitive than initial (yolk dependent) or later life
stages. Adults of both species appear to be the least sensitive life stage.

Ia most cases where the influence of temperature was examined (e.g., Cope

1964; Hooper and Grzenda 1955; Johason and Julin 1980; Macek et al. 1969;

Mahdi 1966; Workman and Neuhold 1963), toxicity was greater at higher temper-
atures. The data obtained by Crosby et al. (1966) with Daphnia gggﬁg constitute
a notable contradiction (Table 6), but the cests only lasted for 26 hr.

Where the effects of additional factors (e.g., water quality conditions,
source of test organisms) oa toxicity were investigated, these are identified
in the temperature column of Table 1 and the effect column of Table 6.

The most well controlled experiments concerning the effects of water quality
were conducted with channel catfish by Johason and Julin (193C) and

indicated little or no influence on toxicity. Henderson et al. (1959)



obtained similar resulcts with the fachead minnow. Data generated using warsar
from different sources (Sanders 1972; Workman and Neuhold 1963) indicate
greater differences in toxicity but the causal factors are uaclear and the
effects might not be attributable to the measured water quality conditions.

Henderson et al. (1960) and Workman and Neuhold (1963) invescigated
the influence of formulation onm toxicity and found essentially no differences,
based on active ingredient, between technical-grade toxaphene and commercial
formulations with percentages of active ingredient ranging from 10 to 62.6%
(Table 1).

Toxaphene is relatively insoluble in water and tends to sorb onto
solid surfaces and particulates, especially those containing organic
materials. Actual conceatratioms of toxaphene in water are almost always
lower than amounts introduced into either flow-through or static test
systems, but are particularly lower in static tests. For example, Hall and
Swineford (1981) measured an average of only 30.5% of the inten&ed water
conceatrations in a series of static acute tests, whereas in a series of
continuou?-flow exposures they obtained 55.4% of the amounts iatended in
their test solutions. Although other flow-through tests probably maintained
water concentrations somewhat closer to calculated values, most of the
uomeasured acute values are probably higher than the actual concentrations
of toxaphene in solution in exposure chambers.

Three stonefly species and eleven fish species have acute values
between 0.8 and 8 ug/L (Table 3), whereas all of the tested freshwater species
with acute values between 20 and 500 Jg/L are amphibians and invertebrates.
The few values that are available for freshwater algae are between 100 and
1,000 ug/L (Table 4). These laboratory data appear to correlate well with the
substantial body of information from field studies related to fish eradicatioa.
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All fish specles were found to be similarly sensitive in the field, but older

fish were more resistant than young ones (e.g., Henegar 1966). Treatment

conceatrations recommended for £ast, complete eradication of fish (10 to

200 4g/L depending on water quality) correspond well with LCS0s obtained

with fish in laboratory studies (e.g., Cushing and Olive 1956; Hempnill

1954 ; Henegar 1966; Kallman et al. 1962; Needham 1966; Rose 1958; Stringer

and McMynn 1958; WebD 1980; Woolitz 1962). Field results also agree with

one another and with the laboratory data that many invercebrate spacles are

less sensitive than fish; that some midges (especially Chaoborus sp.),

amphipods, copepods, cladocerans, Drotozoans, and odonates are amonag the

most sensitive invertebrates (also Hilsenhoff 1965). Oligochaetes, snails,

leeches, and many insects are more resistant, whereas plants and phytoplankton

are quite resistant. - |
Species Mean Acute Values (Table 1) were calculated as geometric means

of the available acute values, and then Genus Mean.Acute Values (Table 35

were calculated as geometric means of the available freshwater Species

Mean Acute Values. Of the 28 freshwater genera for which acute values are

available, the most sensitive genus, Claassenia, LS 385 times more seasitive

than the most resistant, Pseudacris. Acute values are available for more

than one species in each of eight genera, and the range of Species Mean

Acute Values within each genus is less than a factor of 4.4. The nine most

sensitive genera are all within a factor of &4 and include two stoneflies,

the common carp, and several important fish species including the

channel catfish, largemouth bass, coho and chinook salmon, rainbow and

browa trout, and striped bass. The freshwater Final Acute Value for

toxaphene was calculated to be 1.467 ug/L using the procedure described 1n



the Guidelines and the Genus Mean Acute Values in Table 3. This is higner
than the Species Mean Acute Value for the importaant channel catfish, but
the value for this species was not based on the results of a flow-through
rest in which the concentrations of toxaphene were measured.

Acute toxicity values for saltwater animals that are useful for deriving
water quality criteria are from tests with nine invertebrate and six fish
species. The seansitivities of the tested species range from 0.53 .g/L for
for juvenile pinfish, Lagodon rhombiodes (Schimmel et al. 1977) to 460,000

4g/L for adults of the clam, Rangia cuneata (Chaiyarach et al. 1975).

Acute values for stage LI and III larvae of‘the drift line crab, Sesarma
cinereum, were 0.5542 and 0.5298.gg/L, respectively (Courtenay and Roberts
1973) which are similar to the acute value for the pinfish. Except for
resistant goecies tested at concencra:;ons greater than toiaphene's solubilicy
ip water, acute values for mo;clspecies range from 0.53 to 31.32 ag/L.
Fishes and invertebrates are similarly sénsitive.

Limited data are available on the effect of water quality on the
toxicity of toxaphene. The toxicity of toxaphene to adult blue crabs,

Callinectes sapidus, decreased slightly with increase in salimity (Mahood

et al. 1970; McKenzie 1970). They report somewhat greater toxicity to this
species at 10°C and 21°C than at 15°C at salinities of 8.6, 19.3, and 24.2
g/kg (Table 1). 1In contrast, the toxicity of toxaphene to adult threespine

stickleback, Gasterosteus aculeatus, was similar at salinities of 5 and 25

g/kg. The 96-hr LC50s at these salinities were 8.6 and 7.8 .g/L, respectively

(Katz 1961).

Harder et al. (1983) found that the acute toxicities of "parent'" toxaphene

and "sediment-degraded" toxaphene were similar for the spot, Leiostomus
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xanthurus, but that "sediment-degraded"” toxaphene was about three times
more toxic to the white mullet, Mugil curema, (Tables l and 6).

0f the fifteen saltwater genera for which acute values are available, the
most sensitive, Lagodon, is over 867,000 times more sensitive than the
most resistant, Rangia, but the [wo most resistant genera differ by a factor
of 411. The four most sensitive genera include three fishes and an
invertebrate, and the range of sensitivities is only a factor of 2.1,
The saltwater Final Acute Value was calculated to be 0.4197 4g/L, which is

below the acute value for the most sensitive species.

Chronic Toxicitv to Aquatic Animals

The freshwater chronic data indicate about ome to two orders of magnitude
greater sensitivity than the acute data for the same species (Table 2).
Effects were observed at the lowest exposure concentrationm, 0.039 .g/L, in
the brook trout partial life-cycle test conducted by Mayer et al. (1975).
The chronic value for the fathead minnow is 0.03674 ug/L, whereas that for
the channel catfish is 0.1964 .g/L. The one chronic value available for an
invertebrate is 0.09165 .g/L for Daphnia magna.

The chromic toxicity tests that have been conducted with saltwater species

include an early life-stage test (Goodman et al. 1976) and a life-cycle trest

(Goodman 1986) with the sheepshead minnow, Cyprinodon variegatus, an early

life-stage test with the longnose killifish, Fundulus similis (Schimmel et

al. 1977), and a life-cycle test with the mysid, Mysidopsis bahia (Kuhn and

Chammos 1986). Survival of sheepshead minnows was significantly reduced in
2.5 4g/L and no effects on survival or growth were detectable in 1.1 ag/L
in the 28;day early life-stage toxicity test. In a Lkife-cycle test that

lasted 192 days with the same species, 1.0 4g/L reduced survival of both the

11



first and second generations. Average length of fish after 28 days of

exposure to 1.0 Jg/L was reduced; however, for the remaiader of the

exposure, growth was not impaired. Effects of toxaphene on survival,

growth, or reproduction of the sheepshead minnow were not detected 1in

0.51 ag/L. Survival of longnose killifish was reduced in all concentrations

of toxaphene tested in the early life-stage test; fry survival was reduced

in 1.3 ag/L. 1Ia the life-cycle test with the mysid, no adverse effects

on survival, growth, or reproduction were detected at a toxaphene concentration
of 1,585 .g/L, which was the highest concentration tested. The 96-hr

LC50 of 2.03 ug/L was used as the upper chronic limit.

Freshwater acute-chronic ratios are available for two fish species and
one invertebrate species. The acute sensitivities of these ﬁhree species
only range from 5.5 to 10 g/L, but the acute-chronic ratios range from 28
to 196. In the chronic test with a third fish species, the brock trout,
all tested concent}ations of toxaphene caused unacceptable effects. .The
only acute value available for this species was obtained in a test with
yearlings, not juveniles. The available data on freshwater acute-chronic
ratios do not allow calculation of a freshwater Final Chronic Value, but
if one could be calculated it would have t. be less than the 0.039 ug/L
that adversely affected brook trout in a partial life-cycle tesc.

Two acute-chronic ratios are available for the saltwater sheepshead
- minnow, but because the life-cycle test takes precedence over the early
life-stage test, the acute-chronic ratio for this species is 1.540. A
ratio of 1.133 was obtained with a mysid. Both of these rativs are much
smaller than the two ratios that were obtained with freshwater specles.
However, according to the Guidelines, the saltwater éinal Acute=-Chronic
Ratio cannot be less than 2. Thus the saltwater Final Chronic Value for

12



coast saltwater fish (Musial and Uthe 1983); bicrds and several kiands of
aquatic organisms from the Apalachicola River in Florida (Elder and Mattraw
1984; Winger et al. 1984) and Louisiana oxbow lakes (Niethammer et al.
1984); and various fish species in Alabama (Grzenda et al..1964), Texas
(Dick 1982), the Colorado River (Johnson and Lew 1970), Califormia (Keith
and Hunt 1966), South Dakota (Hamnon et al. 1970), and the Mississippl
River delta (Crockett et al. 1975: Epps et al. 1967; Hawthorne et al.
1974). Some mortalities of birds have been associated with agricultural
applications of toxaphene (e.g., Ginn and Fisher 1974; Keith 1966), although
some of these have involved coantamination by other pesticides as well
(Reith 1966: Plumb and Richburg 1977).

In a summary of data on the concentracions of toxaphene in Greaat Lakes
fish through 1981, Rice and Evans (1984) reported that residues” increased
through the 1970s ana that fish in Lake Michigan contained higher concentrations
than those from the other lakes. Like other chlorinated hydrocarbon
mesticides, toxaphene is lipophilic and the highest concentratioas are
gsually in ;he oldest and fattest fish at the top of the food chain, such
as lake trout. Concentrations in this séecies have generally ranged between
| and 10 mg/kg in the most receatly published analyses (Canada Department
of Fisheries and Oceans 1982; Rice and Evans 1984; Schmitt et al. 1985).
Schmitt et al. (1985) reported that toxaphene residues seemed tO have peaked
nationally in U.S. freshwater fish collected in 1980 and 1981, even though
it was more widely distributed than in previous surveys. Residues in Great
Lakes fish, especially those from Lakes Michigan and Superior, generally
appeared 2 to 5 mg/kg lower than the 5 to 10 mg/kg commoaly observed during
the 1970s. Adult lake trout collected from Lake Huron aear Rockport,
Michigan in 1984 contained 2.2 mg/kg; bloater chubs collected from Lake
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Michigan near Saugactuck, ﬂiﬁhigan in 1982 contained 1.6 mg/kg, whereas
those collected in the same area in the fall of 1984 contained 2.2 mg/kg
(personal communication, Robert Hesselberg, U.S. Fish and Wildlife Service,
Great Lakes Fishery Laboratory, Ann Arbor, Michigan). All reported values
are for conceatrations in whole fish, which are probably somewhat higher
than coacentrations in edible tissue. Clark et al. (1984) reported
“appareant toxaphene' residues in coho salmon fillets at below 0.5 mg/kg in
Lakes Erie aua Superior, and up to nearly 2 mg/kg in Lake Michigan and Lake
Huron. "Toxaphene-like" residues have been measured in fillets of lake
trout from the mouth of Saginaw Bay in Lake Huron at up to 26 mg/kg
(Swain et al. 1986).

The concentration of toxaphene in samples of water collected in 1980
from 5 stations in Lake Huron ranged from 1.2 to 2.1 ng/L and averaged 1.6
ng/L (Swain et al. 1986). Although these are referred to as ''toxaphene-
like" materials, the analysts feel quite certain that the observed resid#es
were derived from chlorinated camphene (personal communicativn, Mike Mullin).
Swain et al. (1986) also reported "toxaphene-like" residues in Siskiwit
Lake on Isle Royale in Lake Superior at 2.2 ng/L. Five composites of lake
trout from Siskiwit Lake averaged 4.2 mg/kg and a cross-check of these
analyses by the U.S. Fish and Wildlife Service laboratory in Columbia,
Missouri measured 5.2 mg/kg. Toxaphene has been measured in the water at
several additional sites around Lake Superior since 1982 (personal
communication, Steve Eisearich, University of Minnesota, Minneapolis).
Concentrations in water ranged from 1 to 4 ag/L with the higher values
being present at the western end of the lake. Measurements of the
concentration of toxaphene in water are not known to‘exist for the other

Great Lakes.
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Bioconcentration data from laboratory tests with fish indicacte that

steady=-state between concentrations of toxaphene in water and tissue 1is
reached by about 30 days of exposure. Pooling of all fish whole body data
in Table 5 provides a geometric mean bioconcentration factor (BCF) of
15,000. Daphnia magna accumulated 4,000 times che wacer concentration of
toxaphene. These values are similar to the biocaccumulation factors (BAFs)
observed by Terriere et al. (1966) in several stocked fish species and
other aquatic organisms from two Oregon lakes studied over a 3-year period
during recovery after a fish eradication treatment. Invertebrate residues
ranged between 1,200 and 2 500 times water coacentrations, and aquatic
plants had BAFs of 500 to 7,000. BAFs for fish ranged from 9,000 co 19,000
for rainﬁow trout, 4,000 to 8,000 for Atlantic salmon, and averaged 15,000
for brook trout. Residues in caged rainbow trout introduced ioto ome of
the lakes indicated that steady-state m;ght have been reached Qe;ween 38
and 46 days of exposure. The similarity of the léboratory BCFs (direct
uptake) and field BAFs -- within a factor of 3 or 4 for fish and
invertebrates -- indicates little or no additional contribution from the
food chain.

In contrast, factors of 1,250,000 to 25,000,000 would be required to
produce residues of 5 to 25 mg/kg in lake trout in the Great Lakes (Rice and
Evans 1984; Swain et al. 1986) from toxaphene concentratiomns of 1 to 4
ng/L in water. Because toxaphene is not known to be used or discharged 1in
substantial quantities near the Great Lakes, and especially near Siskiwit
Lake on Isle Royale, it is likely that the toxaphene eatered the water from
the air and that the high concentrations in fish are aot due to localized
"hot spots.'" Possible reasons for the differences bet;een the various data
include: a nigher percent lipid in lake trout than in other, usually less
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fatcy, fish species; lnaccurate measurements of toxaphene: the existence of
food-web magnification of residues in Great Lakes fish not evideat from

other studies (e.g., Oregon lakes); a much longer exposure period in Great
Lakes fish: localized concentrations of toxaphene in the Great Lakes that

are higher than those that have been measured to Aate: and differences in
the precise composition of the toxaphene being measured. Niimi (1985)
discussed the importance of food related bivaccumulation of highly persistent
organic chemicals, including toxaphene, and concluded that much higher
tissue residues would be expected in adult salmonids in tne Great Lakes

than in fishes exposed in laboratory tests.

For saltwater organisms, uptake data from tests lasting 28 days or

longer are available for the eastern oyster, Crassostrea virginica, and two

saltwater fishes, Cyprinodon variegatus and Fundulus similis (Table 5).

The bioconcentration factor (BCF) for edible tissue from oysters exposed to
0.7 and 0.8 .g/L for from 84 to 252 days averaged 13,350 (Lowe et al. 1971).
After 12 weeks of depuration, no toxaphene could be detected Ln oyster
tissues. BCFs for toxaphene in sheepshead minnows are from an early life-
stage and ; life-cycle test. A mean BCF of 9,380 was obtained with juvenile
fish that survived the early life-stage test (Goodman et al. 1976).. In
the life-cycle test BCFs averaged 26,550 for first generation and 21,950
for second genmeration juveniles (Goodman 1986). BCFs in adult females
averaged 64,750 and in males 70,140. With longnose killifish, Fundulus
similis, BCFs averaged 22,640, 31,550 and 34,440 1n 28-day exposures of
embryos and fry, fry, and juveniles, respectively.

The BCFs normalized to 1% lipids range from 1,463 to 28,700 (Table 5)
and the geometric mean is 6,195. By using the 10 an& 11% lipids recommended
in the Guidelines for fresh and salt water, respectively, and the FDA accion
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level of 5 mg/kg, the Final Residue Values for touxaphene are 0.07337 .g/L
for fresh water and 0.08071 .g/L for salt water. However, these Final
Residue Values based on laboratory-derived BCFs will not protect species
that accumulate toxaphene like the lake trout does. It is not unusual for
lake trout in the Great Lakes to exceed the FDA action level in the whole
body, even though the concentration of toxaphene in the water 1s apparently
only 1 to 4 ng/L. Because the percent lipids is so high in the edible
portion of lake trout, it is likely that the concentration of toxaphene in
the edible portion exceeds the FDA action level whenever the comcentration
in the whole body exceeds it. Thus the concentration of toxaphene in water
apparently should not exceed l to 4 ng/L wherever lake trout is a consumed
species. Although some of the lake trout that exceeded the FDA action level
contained up to 31% lipids, others contained only 10 to 15% lipids (Rice and
Evans 1984; Swain et al. 1968), which is in the range of the mean percent
lipids reported for freshwater chinook salmon and lake trout, and saltwater
Atlantic herring (Sidwell 1981). Therefore, because an average concentration
pf toxaphene in the Greac Lakes of about 2 ng/L causes some lake trout to
exceed the FDA action level, there is cause for concern wherever the coacen<

tration of toxaphene exceeds 0.0002 ug/L in either fresh or salt water.

Other Data
Other data on the effects of toxaphene are presented in Table 6.

Sanders (1980) found that 0.18 .g/L reduced the growth of Gammarus fasciatus.

The behavior of goldfish was affected by 0.44 Jg/L (Warner et al. 1966), and

0.144 .g/L inhibited cytochrome P-450 activity inm bluegills (Auwarter 1977).
A biological factor influencing seasitivity to toxaphene is the

development of a resistance resulting from exposures killing the more

sensitive individuals in field populatiovnms. This phenomenon has beea
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demonstrated for several fish and invertebrate species (Table 6) collected
{a areas of high agricultural use (Albaugh 1972; Burke and Ferguson 1969:
Dziuk and Plapp 1973; Ferguson 1968: Ferguson and Bingham 1966; Ferguson et
al. 1965a,b; Klassen et al. 1965; Naqvi and Ferguson 1968,1970). Levels of
resistance more than two orders of magnitude greater than for individuals
from areas uncontaminated with toxaphene have been detected in Mississippl
Delta mosquitofish (Ferguson 1968). The degree of resistance appears (o
correspond to the level of contamination and to be genetically rather than
physiologically mediated. Yarbrough and Chambers (1979) concluded that
extremé resistance in mosquitofish was due primarily to target site
insensitivity, due to a lesser extent toO elevated barriers to pesticide
penetration, and due very litcle to increased metabolism of toxaphene.

Schoettger and Olive (1961) found that Daphnia magna exposed to multiple
sublethal concentrations of toxaphene could accumulate enough pesticide to
be lethal when fed io shiner cinnows.

The aumber and abundance of saltwater arthropods that colonized sand-
filled aquaria receiving ll ug of toxaphene/L for three moaths were significantly
reduced and the abundances of annelids and molluscs were increased (Hansen
and Tagatz 1980). No effects on benthic colonization were observed at 0.77
4g/L. The 96-hr EC50s from three oyster-shell deposition tests ranged from
16 to 38 .g/L (Butler 1963; Lowe et al. 1970; Schimmel et al. 1977: U.S.
Bureau of Commercial Fisheries 1965). No effects on growth or histopatnology
were observed in oysters exposed for 9 moaths to 0.7 ag/L (Lowe et al.

1971). Three species of shrimp were more sensitive to toxaphene. The

48-hr EC50s, based on death plus loss of equilibrium, ranged from 2.7 to

5.2 ug/L (Butler 1963: Lowe et al. 1970; U.S. Bureau'of Commercial Fisheries
1965). Histological alterations were observed in 96-hr exposures of blue
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crab stage II larvae to 0.0072 Jg/L, mud crab larvae to 7.16 ag/L, and drift
line crab larvae to 0.0215 ug/L. Reproduction of the mysid, Mysidopsis
bahia, was reduced 84%Z following exposure to 0.l4 ug/L for 14 days (Nimmo
1977; Nimmo et al. 1981). BCFs after 96-hr exposure averaged 11,000 for
eastern oysters, 326.4 for pink shrimp, and 948.6 for grass shrimp
(Schimmel et al. 1977).

Concentrations of toxaphene lethal to saltwater fishes decreased as the

duration of exposure increased. The 28-day LC50s ranged from 0.9 to 1.4

4g/L for early life stages of the longnose killifish, Fundulus similis
(Schimmel et al. 1977). The 48-hr LC50 for this species is 28 ug/L (Lowe et
al. 1970). The 48- or 96-hr LCSOs range from 1.0 to 3.2 ug/L for the

juvenile spot, Leiostomus xanthurus (Butler 1964; Harder et al. 1983; U.S.

Bureau of Commercial Fisheries 1965). Exposure of this fish for six days
to 0.5 ug/L resulted in 50% mortality; exposure to 0.l .g/L for five months
did not affect grow;h or survival (Lowe 1964). BCFs after 96-hr exposure
averaged 4,284 for sheepshead minnows, 3,850 for pinfish, 2,508 to 3,786
for spot, and 4,807 to 5,020 for white mullet (Harder et al. 1983; Schimmel
et al. 1977). BCFs for spot and mullet are from tests with pareant and
sediment-degraded toxaphene and appear similar.

Blus et al. (1979a,b) reported an apparent linkage between the thickness

of shells of eggs of brown pelicans and organochlorine residues in the birds.

Unused Data

Data were not used if the tests were conducted with a species that 1s
not resident in North America. Results (e.g., Nelson and Matsumura 1975a,b)
of tests conducted with brine shrimp, Artemia sp., were not used because

these species are from a unique saltwater environment. Grahl (1983), Holaen
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(1981), LeBlanc (1984), Mayer and Mehrle (1978), Pollock and Kilgore (1978),
von Rumker (1974), and Whitacre et al. (1972) oaly contain data that have
been published elsewhere.

Schaper and Crowder (1976) used fish from a sewage oxidation poad.

Data were not used if the organisms were exposed to toxaphene Ln food
(Haseltine et al. 1980: Loeb and Kelly 1963; Mehrle et al. 19?9). Davis =t al.
(1972), Desaiah and Koch (1977), Hiltibran (1974,1982), Moffett and Yarbrough
(1972), and Shea and Berry (1982a,b) only exposed homogenized tissues or

cell cultures. Gallagher et al. (1979) studied the fate but not the

effects of toxaphene in saline marsh soils.

Results were not used if the test procedures were not adequacely
described (e.g., Applegate et al. 1957; Boyd 1964: Carter and Graves 1972;
Cohen et al. 1960; Davidow and Sabatino 1954; Doudoroff et al. 1953; Lawrence
1950; Mills 1977; Nelson and Matsumura 1975b; Surber 1948) or Lf toxaphene
was a component of a mixture, efflueat, or sediment (e.g., Durant and
Reimold 1972; Hall et al. 1984: Macek 1975; Rawlings and Samfield 1979;
Reimold 1974; Walsh et al. 1982; Weber and Rosenberg 1980). Khattat and
Farley (1976) obtained an atypical concentration-effect curve with Acartia
tonsa, and Lowe (1964) exposed too few organisms. Some values reported by
Courtenay and Roberts (1973) were not used because the.tes: procedures were
not adequately described. No value was used for stage I larvae of the
drift line crab because two different values were reported and it 1s aot
possible to decide which is correct.

Data on the concentrations of toxaphene in wild aquatic organisms were
not used to calculate biocaccumulation factors if the conceatration of
toxaphene in the water was not measured often enough br if the concentration
varied too much (e.g., Ballschmiter et al. 1981; Blus et al. 1979a,b; Buhler

21



st al. 1975: Butler 1973; Durant and Reimold 1972; Eisenberg and Topping
1984; Gallagher et al. 1979; Keiser et al. 1973; Klaas and Belisle 1977;
Munson 1976; Musial and Uthe 1983; Ohleadorf et al. 1981,1982; Reimold and
Duraat 1974; Szaro et al. 1979; Whice et al. 1979,1980; Zell and Ballschmiter
1980). Zaroogian et al. (1985) predicted a BCF for toxaphene based on

structure—-activity relationships.

Summar

The acute sensitivities of 36 freshwater species in 28 genera ranged
from 0.8 .g/L to 500 4g/L. Such important fish species as the channel
catfish, largemouth bass, chinook and coho salmon, brook, brown and rainbow
trout, striped bass, and bluegill had acute semsitivities ranging from 0.8
Jg/L to 10.8 ug/L. Chronic values for four freshwater species range from
less than 0.039 ag/L for the brook trout to 0.1964 u.g/L for che-channel
catfish. The growth of algae was affected at 100 to 1,000 .g/L, and
bioconcentration factors from laboratory tests ranged from 3,100 to 90,u00.
Concentrations in lake trout in the Great Lakes have frequently exceeded
the U.S. FDA action level of 5 mg/kg, even though the concentrations 1n the
water seem to be oaly 1 to & ng/L. These concentrations in the lake water
are thought to have resulted from toxaphene being transported to th; Great
Lakes from remote sites, the locations of which are not well known.

The acute toxicity of toxaphene L0 15 species of saltwater animals

ranges from 0.53 for pinfish, Lagodon chomoides, to 460,000 ug/L for the

adults of the clam, Rangia cuneata. Except for resistant species tested at
concentrations greater than toxaphene's water solubility, acute values for
most species were within a factor of 10. The toxicity of toxaphene was

found to decrease slightly with increasing salinity for adult blue
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crabs, Callinectes sapidus, whereas no relatiomship between toxicity and

salinity was observed with the threespine stickleback, Gasterosteus aculeatus.
Temperature significantly affected the toxicity of toxaphene to blue crabs.

Early life-stage toxicity tests have been conducted wicth the sheepshead

minnow, Cyprinodon variegatus, and the longnose killifish, Fundulus similis,
whereas lLife-cycle tests have been conducted with the sheepshead minnow and
a mysid. For the sheepshead minnow, chronic values of 1.658 .g/L from the
early life-stage and 0.7141 ug/L from the life-cycle toxicity test are
similar to the 96-hr LC50 of 1.1 ag/L. KRillifish are more chromically
sensitive with effects noted at 0.3 ug/L. In the life-cycle test with the
mysid, no adverse effects were observed at the highest concentration tested,
which was only slightly below the 96-hr LCSO, resulting in an acute-chrounic

ratio of 1.132.

Toxaphene is bioconcentrated by an oyster, Crassostrea virginica, and

two fishes, C. variegatus and F. similis, to concentrations that range from

9,380 to 70,140 times that in the test solution.

National Criteria

The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms and
Their Uses" indicate that, except possibly where a locally important specles
is very sensitive, freshwater aquatic organisms and their uses should not
'be affected unacceptably if the four-day average concentration of toxaphene
does not exceed 0.0002 .g/L more than once every three years on the average
and if the one-hour average conceantration does not exceed 0.73 pg/L more
than once every three years on the average. I1f the concentration of toxaphene

does exceed 0.0002 ug/L, the edible portioas of consumed species should be
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analyzed to determine whether the concentration of toxapnene exceeds the
FDA action level of 5 mg/kg. If the channel catfish is as acutely sensitive
as some data indicate it might be, it will not be ptoﬁected by this criterion.

The procedures described in the "Guidelines for Deriving Numerical
Na:ional Water Quality Criteria for the Protection of Aquatic Organisms and
Their Uses" indicate that, except possibly where a locally important species
is very sensitive, saltwater aquatic organisms and their uses should not be
affected unacceptably if the one-hour average concentration of toxaphene
does not exceed 0.21 ug/L more than once every three years on the average and
if the four-day average comcentration of toxaphene does not exceed 0.0002
pg/L more than once every three years on the average. I1f the concentration
of toxaphene does exceed 0.0002 ug/L, the edible portions of consumed
species should be analyzed to determine whether the concentration of
toxaphene exceeds the FDA action level of 5 mg/kg.

Three years is the Agency's best scientific judgment of the average
amount of time aquatic ecosystems should be provided between excursions
(U.S. EPA 1985b). The resiliencies of ecosystems and their abilities to
recover differ greatly, however, and site-specific allowed excursion
frequencies may be established if adequate justification is provided.

Use of criteria for developing water quality-based permit limits and
for designing waste treatment facilities requires selection of an appropriate
wasteload allocation model. Dynamic models are preferred for the application
of these criteria (U.S. EPA 1985b). Limited data or other considerations
might make their use impractical, in which case one must rely on a

steady-state model (U.S. EPA 1986).
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